Transcendental Lattices of Certain Singular K3 Surfaces

نویسنده

  • ICHIRO SHIMADA
چکیده

We present a method of Zariski-van Kampen type for the calculation of the transcendental lattice of a complex projective surface. As an application, we calculate the transcendental lattices of complex singular K3 surfaces associated with an arithmetic Zariski pair of maximizing sextics of type A10 + A9 that are defined over Q( √ 5) and are conjugate to each other by the action of Gal(Q( √ 5)/Q).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 80 6 . 33 11 v 2 [ m at h . A G ] 5 J un 2 00 9 ZARISKI - VAN KAMPEN METHOD AND TRANSCENDENTAL LATTICES OF CERTAIN SINGULAR K 3 SURFACES

We present a method of Zariski-van Kampen type for the calculation of the transcendental lattice of a complex projective surface. As an application, we calculate the transcendental lattices of complex singular K3 surfaces associated with an arithmetic Zariski pair of maximizing sextics of type A10 + A9 that are defined over Q( √ 5) and are conjugate to each other by the action of Gal(Q( √

متن کامل

. A G ] 2 0 Ju n 20 08 ZARISKI - VAN KAMPEN METHOD AND TRANSCENDENTAL LATTICES OF CERTAIN SINGULAR K 3 SURFACES

We present a method of Zariski-van Kampen type for the calculation of the transcendental lattice of a complex projective surface. As an application, we calculate the transcendental lattices of complex singular K3 surfaces associated with an arithmetic Zariski pair of maximizing sextics of type A10 + A9 that are defined over Q( √ 5) and are conjugate to each other by the action of Gal(Q( √

متن کامل

Transcendental Lattices of Some K3-surfaces

In a previous paper, [S2], we described six families of K3-surfaces with Picardnumber 19, and we identified surfaces with Picard-number 20. In these notes we classify some of the surfaces by computing their transcendental lattices. Moreover we show that the surfaces with Picard-number 19 are birational to a Kummer surface which is the quotient of a non-product type abelian surface by an involut...

متن کامل

Transcendental Lattices and Supersingular Reduction Lattices of a Singular K3 Surface

A (smooth) K3 surface X defined over a field k of characteristic 0 is called singular if the Néron-Severi lattice NS(X) of X ⊗ k is of rank 20. Let X be a singular K3 surface defined over a number field F . For each embedding σ : F →֒ C, we denote by T (Xσ) the transcendental lattice of the complex K3 surface Xσ obtained from X by σ. For each prime ideal p of F at which X has a supersingular red...

متن کامل

Surfaces via Almost - Primes

Based on the result on derived categories on K3 surfaces due to Mukai and Orlov and the result concerning almost-prime numbers due to Iwaniec, we remark the following facts: (1) For any given positive integer N , there are N (mutually non-isomorphic) projective complex K3 surfaces such that their Picard groups are not isomorphic but their transcendental lattices are Hodge isometric, or equivale...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008